Mister Exam

Other calculators

5,9(x−10)(x+33)=0. equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
59*(x - 10)             
-----------*(x + 33) = 0
     10                 
$$\frac{59 \left(x - 10\right)}{10} \left(x + 33\right) = 0$$
Detail solution
Expand the expression in the equation
$$\frac{59 \left(x - 10\right)}{10} \left(x + 33\right) = 0$$
We get the quadratic equation
$$\frac{59 x^{2}}{10} + \frac{1357 x}{10} - 1947 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = \frac{59}{10}$$
$$b = \frac{1357}{10}$$
$$c = -1947$$
, then
D = b^2 - 4 * a * c = 

(1357/10)^2 - 4 * (59/10) * (-1947) = 6436369/100

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 10$$
$$x_{2} = -33$$
Sum and product of roots [src]
sum
-33 + 10
$$-33 + 10$$
=
-23
$$-23$$
product
-33*10
$$- 330$$
=
-330
$$-330$$
-330
Rapid solution [src]
x1 = -33
$$x_{1} = -33$$
x2 = 10
$$x_{2} = 10$$
x2 = 10
Numerical answer [src]
x1 = -33.0
x2 = 10.0
x2 = 10.0