Mister Exam

Other calculators

exp(x*(n+m))=H*n*m equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x*(n + m)        
e          = h*n*m
$$e^{x \left(m + n\right)} = m h n$$
Detail solution
Given the equation:
$$e^{x \left(m + n\right)} = m h n$$
or
$$- m h n + e^{x \left(m + n\right)} = 0$$
or
$$\left(e^{m + n}\right)^{x} = h m n$$
or
$$\left(e^{m + n}\right)^{x} = h m n$$
- this is the simplest exponential equation
Do replacement
$$v = \left(e^{m + n}\right)^{x}$$
we get
$$- h m n + v = 0$$
or
$$- h m n + v = 0$$
Divide both parts of the equation by (v - h*m*n)/v
v = 0 / ((v - h*m*n)/v)

We get the answer: v = h*m*n
do backward replacement
$$\left(e^{m + n}\right)^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(e^{m + n} \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(h m n \right)}}{\log{\left(e^{m + n} \right)}} = \frac{\log{\left(h m n \right)}}{\log{\left(e^{m + n} \right)}}$$
The graph
Rapid solution [src]
         /log(h*m*n)\     /log(h*m*n)\
x1 = I*im|----------| + re|----------|
         \  m + n   /     \  m + n   /
$$x_{1} = \operatorname{re}{\left(\frac{\log{\left(h m n \right)}}{m + n}\right)} + i \operatorname{im}{\left(\frac{\log{\left(h m n \right)}}{m + n}\right)}$$
x1 = re(log(h*m*n)/(m + n)) + i*im(log(h*m*n)/(m + n))
Sum and product of roots [src]
sum
    /log(h*m*n)\     /log(h*m*n)\
I*im|----------| + re|----------|
    \  m + n   /     \  m + n   /
$$\operatorname{re}{\left(\frac{\log{\left(h m n \right)}}{m + n}\right)} + i \operatorname{im}{\left(\frac{\log{\left(h m n \right)}}{m + n}\right)}$$
=
    /log(h*m*n)\     /log(h*m*n)\
I*im|----------| + re|----------|
    \  m + n   /     \  m + n   /
$$\operatorname{re}{\left(\frac{\log{\left(h m n \right)}}{m + n}\right)} + i \operatorname{im}{\left(\frac{\log{\left(h m n \right)}}{m + n}\right)}$$
product
    /log(h*m*n)\     /log(h*m*n)\
I*im|----------| + re|----------|
    \  m + n   /     \  m + n   /
$$\operatorname{re}{\left(\frac{\log{\left(h m n \right)}}{m + n}\right)} + i \operatorname{im}{\left(\frac{\log{\left(h m n \right)}}{m + n}\right)}$$
=
    /log(h*m*n)\     /log(h*m*n)\
I*im|----------| + re|----------|
    \  m + n   /     \  m + n   /
$$\operatorname{re}{\left(\frac{\log{\left(h m n \right)}}{m + n}\right)} + i \operatorname{im}{\left(\frac{\log{\left(h m n \right)}}{m + n}\right)}$$
i*im(log(h*m*n)/(m + n)) + re(log(h*m*n)/(m + n))