Mister Exam

Other calculators

e^x=t²-1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x    2    
e  = t  - 1
$$e^{x} = t^{2} - 1$$
Detail solution
Given the equation:
$$e^{x} = t^{2} - 1$$
or
$$\left(1 - t^{2}\right) + e^{x} = 0$$
Do replacement
$$v = e^{x}$$
we get
$$- t^{2} + v + 1 = 0$$
or
$$- t^{2} + v + 1 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$- t^{2} + v = -1$$
Divide both parts of the equation by (v - t^2)/v
v = -1 / ((v - t^2)/v)

We get the answer: v = -1 + t^2
do backward replacement
$$e^{x} = v$$
or
$$x = \log{\left(v \right)}$$
The final answer
$$x_{1} = \frac{\log{\left(t^{2} - 1 \right)}}{\log{\left(e \right)}} = \log{\left(t^{2} - 1 \right)}$$
The graph
Sum and product of roots [src]
sum
       /      2\
0 + log\-1 + t /
$$\log{\left(t^{2} - 1 \right)} + 0$$
=
   /      2\
log\-1 + t /
$$\log{\left(t^{2} - 1 \right)}$$
product
     /      2\
1*log\-1 + t /
$$1 \log{\left(t^{2} - 1 \right)}$$
=
   /      2\
log\-1 + t /
$$\log{\left(t^{2} - 1 \right)}$$
log(-1 + t^2)
Rapid solution [src]
        /      2\
x1 = log\-1 + t /
$$x_{1} = \log{\left(t^{2} - 1 \right)}$$