e^x=t²-1 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$e^{x} = t^{2} - 1$$
or
$$\left(1 - t^{2}\right) + e^{x} = 0$$
Do replacement
$$v = e^{x}$$
we get
$$- t^{2} + v + 1 = 0$$
or
$$- t^{2} + v + 1 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$- t^{2} + v = -1$$
Divide both parts of the equation by (v - t^2)/v
v = -1 / ((v - t^2)/v)
We get the answer: v = -1 + t^2
do backward replacement
$$e^{x} = v$$
or
$$x = \log{\left(v \right)}$$
The final answer
$$x_{1} = \frac{\log{\left(t^{2} - 1 \right)}}{\log{\left(e \right)}} = \log{\left(t^{2} - 1 \right)}$$
Sum and product of roots
[src]
$$\log{\left(t^{2} - 1 \right)} + 0$$
$$\log{\left(t^{2} - 1 \right)}$$
$$1 \log{\left(t^{2} - 1 \right)}$$
$$\log{\left(t^{2} - 1 \right)}$$
$$x_{1} = \log{\left(t^{2} - 1 \right)}$$