Mister Exam

Other calculators


7x^2-6x+2=0

7x^2-6x+2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2              
7*x  - 6*x + 2 = 0
$$\left(7 x^{2} - 6 x\right) + 2 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 7$$
$$b = -6$$
$$c = 2$$
, then
D = b^2 - 4 * a * c = 

(-6)^2 - 4 * (7) * (2) = -20

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{3}{7} + \frac{\sqrt{5} i}{7}$$
$$x_{2} = \frac{3}{7} - \frac{\sqrt{5} i}{7}$$
Vieta's Theorem
rewrite the equation
$$\left(7 x^{2} - 6 x\right) + 2 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{6 x}{7} + \frac{2}{7} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{6}{7}$$
$$q = \frac{c}{a}$$
$$q = \frac{2}{7}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{6}{7}$$
$$x_{1} x_{2} = \frac{2}{7}$$
The graph
Rapid solution [src]
             ___
     3   I*\/ 5 
x1 = - - -------
     7      7   
$$x_{1} = \frac{3}{7} - \frac{\sqrt{5} i}{7}$$
             ___
     3   I*\/ 5 
x2 = - + -------
     7      7   
$$x_{2} = \frac{3}{7} + \frac{\sqrt{5} i}{7}$$
x2 = 3/7 + sqrt(5)*i/7
Sum and product of roots [src]
sum
        ___           ___
3   I*\/ 5    3   I*\/ 5 
- - ------- + - + -------
7      7      7      7   
$$\left(\frac{3}{7} - \frac{\sqrt{5} i}{7}\right) + \left(\frac{3}{7} + \frac{\sqrt{5} i}{7}\right)$$
=
6/7
$$\frac{6}{7}$$
product
/        ___\ /        ___\
|3   I*\/ 5 | |3   I*\/ 5 |
|- - -------|*|- + -------|
\7      7   / \7      7   /
$$\left(\frac{3}{7} - \frac{\sqrt{5} i}{7}\right) \left(\frac{3}{7} + \frac{\sqrt{5} i}{7}\right)$$
=
2/7
$$\frac{2}{7}$$
2/7
Numerical answer [src]
x1 = 0.428571428571429 + 0.31943828249997*i
x2 = 0.428571428571429 - 0.31943828249997*i
x2 = 0.428571428571429 - 0.31943828249997*i
The graph
7x^2-6x+2=0 equation