Mister Exam

Other calculators

6x^2-36x-16,5=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2          33    
6*x  - 36*x - -- = 0
              2     
$$\left(6 x^{2} - 36 x\right) - \frac{33}{2} = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 6$$
$$b = -36$$
$$c = - \frac{33}{2}$$
, then
D = b^2 - 4 * a * c = 

(-36)^2 - 4 * (6) * (-33/2) = 1692

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 3 + \frac{\sqrt{47}}{2}$$
$$x_{2} = 3 - \frac{\sqrt{47}}{2}$$
Vieta's Theorem
rewrite the equation
$$\left(6 x^{2} - 36 x\right) - \frac{33}{2} = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - 6 x - \frac{11}{4} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -6$$
$$q = \frac{c}{a}$$
$$q = - \frac{11}{4}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 6$$
$$x_{1} x_{2} = - \frac{11}{4}$$
Rapid solution [src]
           ____
         \/ 47 
x1 = 3 - ------
           2   
$$x_{1} = 3 - \frac{\sqrt{47}}{2}$$
           ____
         \/ 47 
x2 = 3 + ------
           2   
$$x_{2} = 3 + \frac{\sqrt{47}}{2}$$
x2 = 3 + sqrt(47)/2
Sum and product of roots [src]
sum
      ____         ____
    \/ 47        \/ 47 
3 - ------ + 3 + ------
      2            2   
$$\left(3 - \frac{\sqrt{47}}{2}\right) + \left(3 + \frac{\sqrt{47}}{2}\right)$$
=
6
$$6$$
product
/      ____\ /      ____\
|    \/ 47 | |    \/ 47 |
|3 - ------|*|3 + ------|
\      2   / \      2   /
$$\left(3 - \frac{\sqrt{47}}{2}\right) \left(3 + \frac{\sqrt{47}}{2}\right)$$
=
-11/4
$$- \frac{11}{4}$$
-11/4
Numerical answer [src]
x1 = -0.427827300200522
x2 = 6.42782730020052
x2 = 6.42782730020052