Mister Exam

Other calculators


6x^2-35x+50=0

6x^2-35x+50=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2                
6*x  - 35*x + 50 = 0
$$6 x^{2} - 35 x + 50 = 0$$
Detail solution
This equation is of the form
$$a\ x^2 + b\ x + c = 0$$
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where $D = b^2 - 4 a c$ is the discriminant.
Because
$$a = 6$$
$$b = -35$$
$$c = 50$$
, then
$$D = b^2 - 4\ a\ c = $$
$$\left(-1\right) 6 \cdot 4 \cdot 50 + \left(-35\right)^{2} = 25$$
Because D > 0, then the equation has two roots.
$$x_1 = \frac{(-b + \sqrt{D})}{2 a}$$
$$x_2 = \frac{(-b - \sqrt{D})}{2 a}$$
or
$$x_{1} = \frac{10}{3}$$
Simplify
$$x_{2} = \frac{5}{2}$$
Simplify
Vieta's Theorem
rewrite the equation
$$6 x^{2} - 35 x + 50 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{35 x}{6} + \frac{25}{3} = 0$$
$$p x + x^{2} + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{35}{6}$$
$$q = \frac{c}{a}$$
$$q = \frac{25}{3}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{35}{6}$$
$$x_{1} x_{2} = \frac{25}{3}$$
The graph
Rapid solution [src]
x_1 = 5/2
$$x_{1} = \frac{5}{2}$$
x_2 = 10/3
$$x_{2} = \frac{10}{3}$$
Sum and product of roots [src]
sum
5/2 + 10/3
$$\left(\frac{5}{2}\right) + \left(\frac{10}{3}\right)$$
=
35/6
$$\frac{35}{6}$$
product
5/2 * 10/3
$$\left(\frac{5}{2}\right) * \left(\frac{10}{3}\right)$$
=
25/3
$$\frac{25}{3}$$
Numerical answer [src]
x1 = 3.33333333333333
x2 = 2.5
x2 = 2.5
The graph
6x^2-35x+50=0 equation