This equation is of the form
$$a\ x^2 + b\ x + c = 0$$
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where $D = b^2 - 4 a c$ is the discriminant.
Because
$$a = 6$$
$$b = -35$$
$$c = 50$$
, then
$$D = b^2 - 4\ a\ c = $$
$$\left(-1\right) 6 \cdot 4 \cdot 50 + \left(-35\right)^{2} = 25$$
Because D > 0, then the equation has two roots.
$$x_1 = \frac{(-b + \sqrt{D})}{2 a}$$
$$x_2 = \frac{(-b - \sqrt{D})}{2 a}$$
or
$$x_{1} = \frac{10}{3}$$
Simplify$$x_{2} = \frac{5}{2}$$
Simplify