Mister Exam

Other calculators

(4x-1)2-2x(8x-3)=3 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
(4*x - 1)*2 - 2*x*(8*x - 3) = 3
$$- 2 x \left(8 x - 3\right) + 2 \left(4 x - 1\right) = 3$$
Detail solution
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$- 2 x \left(8 x - 3\right) + 2 \left(4 x - 1\right) = 3$$
to
$$\left(- 2 x \left(8 x - 3\right) + 2 \left(4 x - 1\right)\right) - 3 = 0$$
Expand the expression in the equation
$$\left(- 2 x \left(8 x - 3\right) + 2 \left(4 x - 1\right)\right) - 3 = 0$$
We get the quadratic equation
$$- 16 x^{2} + 14 x - 5 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -16$$
$$b = 14$$
$$c = -5$$
, then
D = b^2 - 4 * a * c = 

(14)^2 - 4 * (-16) * (-5) = -124

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{7}{16} - \frac{\sqrt{31} i}{16}$$
$$x_{2} = \frac{7}{16} + \frac{\sqrt{31} i}{16}$$
The graph
Rapid solution [src]
              ____
     7    I*\/ 31 
x1 = -- - --------
     16      16   
$$x_{1} = \frac{7}{16} - \frac{\sqrt{31} i}{16}$$
              ____
     7    I*\/ 31 
x2 = -- + --------
     16      16   
$$x_{2} = \frac{7}{16} + \frac{\sqrt{31} i}{16}$$
x2 = 7/16 + sqrt(31)*i/16
Sum and product of roots [src]
sum
         ____            ____
7    I*\/ 31    7    I*\/ 31 
-- - -------- + -- + --------
16      16      16      16   
$$\left(\frac{7}{16} - \frac{\sqrt{31} i}{16}\right) + \left(\frac{7}{16} + \frac{\sqrt{31} i}{16}\right)$$
=
7/8
$$\frac{7}{8}$$
product
/         ____\ /         ____\
|7    I*\/ 31 | |7    I*\/ 31 |
|-- - --------|*|-- + --------|
\16      16   / \16      16   /
$$\left(\frac{7}{16} - \frac{\sqrt{31} i}{16}\right) \left(\frac{7}{16} + \frac{\sqrt{31} i}{16}\right)$$
=
5/16
$$\frac{5}{16}$$
5/16
Numerical answer [src]
x1 = 0.4375 + 0.347985272676876*i
x2 = 0.4375 - 0.347985272676876*i
x2 = 0.4375 - 0.347985272676876*i