Mister Exam

Other calculators

(3xy-1)(1+3xy)=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
(3*x*y - 1)*(1 + 3*x*y) = 0
$$\left(3 x y - 1\right) \left(3 x y + 1\right) = 0$$
Detail solution
Expand the expression in the equation
$$\left(3 x y - 1\right) \left(3 x y + 1\right) = 0$$
We get the quadratic equation
$$9 x^{2} y^{2} - 3 x y + 3 x y - 1 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 9 y^{2}$$
$$b = 0$$
$$c = -1$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (9*y^2) * (-1) = 36*y^2

The equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{\sqrt{y^{2}}}{3 y^{2}}$$
$$x_{2} = - \frac{\sqrt{y^{2}}}{3 y^{2}}$$
The graph
Rapid solution [src]
              re(y)                I*im(y)      
x1 = - ------------------- + -------------------
         /  2        2   \     /  2        2   \
       3*\im (y) + re (y)/   3*\im (y) + re (y)/
$$x_{1} = - \frac{\operatorname{re}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)} + \frac{i \operatorname{im}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)}$$
            re(y)                I*im(y)      
x2 = ------------------- - -------------------
       /  2        2   \     /  2        2   \
     3*\im (y) + re (y)/   3*\im (y) + re (y)/
$$x_{2} = \frac{\operatorname{re}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)} - \frac{i \operatorname{im}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)}$$
x2 = re(y)/(3*(re(y)^2 + im(y)^2)) - i*im(y)/(3*(re(y)^2 + im(y)^2))
Sum and product of roots [src]
sum
         re(y)                I*im(y)                re(y)                I*im(y)      
- ------------------- + ------------------- + ------------------- - -------------------
    /  2        2   \     /  2        2   \     /  2        2   \     /  2        2   \
  3*\im (y) + re (y)/   3*\im (y) + re (y)/   3*\im (y) + re (y)/   3*\im (y) + re (y)/
$$\left(- \frac{\operatorname{re}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)} + \frac{i \operatorname{im}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)}\right) + \left(\frac{\operatorname{re}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)} - \frac{i \operatorname{im}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)}\right)$$
=
0
$$0$$
product
/         re(y)                I*im(y)      \ /       re(y)                I*im(y)      \
|- ------------------- + -------------------|*|------------------- - -------------------|
|    /  2        2   \     /  2        2   \| |  /  2        2   \     /  2        2   \|
\  3*\im (y) + re (y)/   3*\im (y) + re (y)// \3*\im (y) + re (y)/   3*\im (y) + re (y)//
$$\left(- \frac{\operatorname{re}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)} + \frac{i \operatorname{im}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)}\right) \left(\frac{\operatorname{re}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)} - \frac{i \operatorname{im}{\left(y\right)}}{3 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)}\right)$$
=
                   2 
-(-I*im(y) + re(y))  
---------------------
                    2
   /  2        2   \ 
 9*\im (y) + re (y)/ 
$$- \frac{\left(\operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)}\right)^{2}}{9 \left(\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}\right)^{2}}$$
-(-i*im(y) + re(y))^2/(9*(im(y)^2 + re(y)^2)^2)