The teacher will be very surprised to see your correct solution 😉
(3*x*y - 1)*(1 + 3*x*y) = 0
a*x^2 + b*x + c = 0
D = b^2 - 4 * a * c =
(0)^2 - 4 * (9*y^2) * (-1) = 36*y^2
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
re(y) I*im(y)
x1 = - ------------------- + -------------------
/ 2 2 \ / 2 2 \
3*\im (y) + re (y)/ 3*\im (y) + re (y)/
re(y) I*im(y)
x2 = ------------------- - -------------------
/ 2 2 \ / 2 2 \
3*\im (y) + re (y)/ 3*\im (y) + re (y)/
x2 = re(y)/(3*(re(y)^2 + im(y)^2)) - i*im(y)/(3*(re(y)^2 + im(y)^2))
sum
re(y) I*im(y) re(y) I*im(y)
- ------------------- + ------------------- + ------------------- - -------------------
/ 2 2 \ / 2 2 \ / 2 2 \ / 2 2 \
3*\im (y) + re (y)/ 3*\im (y) + re (y)/ 3*\im (y) + re (y)/ 3*\im (y) + re (y)/
=
0
product
/ re(y) I*im(y) \ / re(y) I*im(y) \ |- ------------------- + -------------------|*|------------------- - -------------------| | / 2 2 \ / 2 2 \| | / 2 2 \ / 2 2 \| \ 3*\im (y) + re (y)/ 3*\im (y) + re (y)// \3*\im (y) + re (y)/ 3*\im (y) + re (y)//
=
2
-(-I*im(y) + re(y))
---------------------
2
/ 2 2 \
9*\im (y) + re (y)/
-(-i*im(y) + re(y))^2/(9*(im(y)^2 + re(y)^2)^2)