A quadratic equation can be solved using the discriminant. The roots of the quadratic equation: x1=2aD−b x2=2a−D−b where D = b^2 - 4*a*c - it is the discriminant. Because a=3 b=−5 c=2 , then
D = b^2 - 4 * a * c =
(-5)^2 - 4 * (3) * (2) = 1
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or x1=1 x2=32
Vieta's Theorem
rewrite the equation (3x2−5x)+2=0 of ax2+bx+c=0 as reduced quadratic equation x2+abx+ac=0 x2−35x+32=0 px+q+x2=0 where p=ab p=−35 q=ac q=32 Vieta Formulas x1+x2=−p x1x2=q x1+x2=35 x1x2=32