Mister Exam

Other calculators


(3x-2)*(3x-2)+(4x-5)^2=10x+21

(3x-2)*(3x-2)+(4x-5)^2=10x+21 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
                               2            
(3*x - 2)*(3*x - 2) + (4*x - 5)  = 10*x + 21
$$\left(3 x - 2\right) \left(3 x - 2\right) + \left(4 x - 5\right)^{2} = 10 x + 21$$
Detail solution
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$\left(3 x - 2\right) \left(3 x - 2\right) + \left(4 x - 5\right)^{2} = 10 x + 21$$
to
$$\left(- 10 x - 21\right) + \left(\left(3 x - 2\right) \left(3 x - 2\right) + \left(4 x - 5\right)^{2}\right) = 0$$
Expand the expression in the equation
$$\left(- 10 x - 21\right) + \left(\left(3 x - 2\right) \left(3 x - 2\right) + \left(4 x - 5\right)^{2}\right) = 0$$
We get the quadratic equation
$$25 x^{2} - 62 x + 8 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 25$$
$$b = -62$$
$$c = 8$$
, then
D = b^2 - 4 * a * c = 

(-62)^2 - 4 * (25) * (8) = 3044

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{\sqrt{761}}{25} + \frac{31}{25}$$
Simplify
$$x_{2} = \frac{31}{25} - \frac{\sqrt{761}}{25}$$
Simplify
The graph
Sum and product of roots [src]
sum
           _____          _____
    31   \/ 761    31   \/ 761 
0 + -- - ------- + -- + -------
    25      25     25      25  
$$\left(0 + \left(\frac{31}{25} - \frac{\sqrt{761}}{25}\right)\right) + \left(\frac{\sqrt{761}}{25} + \frac{31}{25}\right)$$
=
62
--
25
$$\frac{62}{25}$$
product
  /       _____\ /       _____\
  |31   \/ 761 | |31   \/ 761 |
1*|-- - -------|*|-- + -------|
  \25      25  / \25      25  /
$$1 \cdot \left(\frac{31}{25} - \frac{\sqrt{761}}{25}\right) \left(\frac{\sqrt{761}}{25} + \frac{31}{25}\right)$$
=
8/25
$$\frac{8}{25}$$
8/25
Rapid solution [src]
            _____
     31   \/ 761 
x1 = -- - -------
     25      25  
$$x_{1} = \frac{31}{25} - \frac{\sqrt{761}}{25}$$
            _____
     31   \/ 761 
x2 = -- + -------
     25      25  
$$x_{2} = \frac{\sqrt{761}}{25} + \frac{31}{25}$$
Numerical answer [src]
x1 = 2.3434491379307
x2 = 0.136550862069302
x2 = 0.136550862069302
The graph
(3x-2)*(3x-2)+(4x-5)^2=10x+21 equation