Mister Exam

Other calculators

(3x-1)(-x-4)=v equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
(3*x - 1)*(-x - 4) = v
$$\left(- x - 4\right) \left(3 x - 1\right) = v$$
Detail solution
Given the linear equation:
(3*x-1)*(-x-4) = v

Expand brackets in the left part
3*x-1-x-4 = v

Looking for similar summands in the left part:
(-1 + 3*x)*(-4 - x) = v

Move free summands (without v)
from left part to right part, we given:
$$\left(- x - 4\right) \left(3 x - 1\right) + 1 = v + 1$$
Move the summands with the unknown v
from the right part to the left part:
$$- v + \left(- x - 4\right) \left(3 x - 1\right) + 1 = 1$$
Divide both parts of the equation by (1 - v + (-1 + 3*x)*(-4 - x))/v
v = 1 / ((1 - v + (-1 + 3*x)*(-4 - x))/v)

We get the answer: v = 4 - 11*x - 3*x^2
The graph
Rapid solution [src]
                        2          2                                   
v1 = 4 - 11*re(x) - 3*re (x) + 3*im (x) + I*(-11*im(x) - 6*im(x)*re(x))
$$v_{1} = i \left(- 6 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)} - 11 \operatorname{im}{\left(x\right)}\right) - 3 \left(\operatorname{re}{\left(x\right)}\right)^{2} - 11 \operatorname{re}{\left(x\right)} + 3 \left(\operatorname{im}{\left(x\right)}\right)^{2} + 4$$
v1 = i*(-6*re(x)*im(x) - 11*im(x)) - 3*re(x)^2 - 11*re(x) + 3*im(x)^2 + 4
Sum and product of roots [src]
sum
                   2          2                                   
4 - 11*re(x) - 3*re (x) + 3*im (x) + I*(-11*im(x) - 6*im(x)*re(x))
$$i \left(- 6 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)} - 11 \operatorname{im}{\left(x\right)}\right) - 3 \left(\operatorname{re}{\left(x\right)}\right)^{2} - 11 \operatorname{re}{\left(x\right)} + 3 \left(\operatorname{im}{\left(x\right)}\right)^{2} + 4$$
=
                   2          2                                   
4 - 11*re(x) - 3*re (x) + 3*im (x) + I*(-11*im(x) - 6*im(x)*re(x))
$$i \left(- 6 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)} - 11 \operatorname{im}{\left(x\right)}\right) - 3 \left(\operatorname{re}{\left(x\right)}\right)^{2} - 11 \operatorname{re}{\left(x\right)} + 3 \left(\operatorname{im}{\left(x\right)}\right)^{2} + 4$$
product
                   2          2                                   
4 - 11*re(x) - 3*re (x) + 3*im (x) + I*(-11*im(x) - 6*im(x)*re(x))
$$i \left(- 6 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)} - 11 \operatorname{im}{\left(x\right)}\right) - 3 \left(\operatorname{re}{\left(x\right)}\right)^{2} - 11 \operatorname{re}{\left(x\right)} + 3 \left(\operatorname{im}{\left(x\right)}\right)^{2} + 4$$
=
                   2          2                            
4 - 11*re(x) - 3*re (x) + 3*im (x) - I*(11 + 6*re(x))*im(x)
$$- i \left(6 \operatorname{re}{\left(x\right)} + 11\right) \operatorname{im}{\left(x\right)} - 3 \left(\operatorname{re}{\left(x\right)}\right)^{2} - 11 \operatorname{re}{\left(x\right)} + 3 \left(\operatorname{im}{\left(x\right)}\right)^{2} + 4$$
4 - 11*re(x) - 3*re(x)^2 + 3*im(x)^2 - i*(11 + 6*re(x))*im(x)