This equation is of the form
a*a^2 + b*a + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$a_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$a_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 3$$
$$b = 1$$
$$c = -4$$
, then
D = b^2 - 4 * a * c =
(1)^2 - 4 * (3) * (-4) = 49
Because D > 0, then the equation has two roots.
a1 = (-b + sqrt(D)) / (2*a)
a2 = (-b - sqrt(D)) / (2*a)
or
$$a_{1} = 1$$
$$a_{2} = - \frac{4}{3}$$