Mister Exam

Other calculators

2x^3+1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   3        
2*x  + 1 = 0
$$2 x^{3} + 1 = 0$$
Detail solution
Given the equation
$$2 x^{3} + 1 = 0$$
Because equation degree is equal to = 3 - does not contain even numbers in the numerator, then
the equation has single real root.
Get the root 3-th degree of the equation sides:
We get:
$$\sqrt[3]{2} \sqrt[3]{x^{3}} = \sqrt[3]{-1}$$
or
$$\sqrt[3]{2} x = \sqrt[3]{-1}$$
Expand brackets in the left part
x*2^1/3 = (-1)^(1/3)

Expand brackets in the right part
x*2^1/3 = -1^1/3

Divide both parts of the equation by 2^(1/3)
x = (-1)^(1/3) / (2^(1/3))

We get the answer: x = (-1)^(1/3)*2^(2/3)/2

All other 2 root(s) is the complex numbers.
do replacement:
$$z = x$$
then the equation will be the:
$$z^{3} = - \frac{1}{2}$$
Any complex number can presented so:
$$z = r e^{i p}$$
substitute to the equation
$$r^{3} e^{3 i p} = - \frac{1}{2}$$
where
$$r = \frac{2^{\frac{2}{3}}}{2}$$
- the magnitude of the complex number
Substitute r:
$$e^{3 i p} = -1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = -1$$
so
$$\cos{\left(3 p \right)} = -1$$
and
$$\sin{\left(3 p \right)} = 0$$
then
$$p = \frac{2 \pi N}{3} + \frac{\pi}{3}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for z
Consequently, the solution will be for z:
$$z_{1} = - \frac{2^{\frac{2}{3}}}{2}$$
$$z_{2} = \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
$$z_{3} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
do backward replacement
$$z = x$$
$$x = z$$

The final answer:
$$x_{1} = - \frac{2^{\frac{2}{3}}}{2}$$
$$x_{2} = \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
$$x_{3} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
Vieta's Theorem
rewrite the equation
$$2 x^{3} + 1 = 0$$
of
$$a x^{3} + b x^{2} + c x + d = 0$$
as reduced cubic equation
$$x^{3} + \frac{b x^{2}}{a} + \frac{c x}{a} + \frac{d}{a} = 0$$
$$x^{3} + \frac{1}{2} = 0$$
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 0$$
$$v = \frac{d}{a}$$
$$v = \frac{1}{2}$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = 0$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 0$$
$$x_{1} x_{2} x_{3} = \frac{1}{2}$$
The graph
Sum and product of roots [src]
sum
   2/3    2/3      2/3   ___    2/3      2/3   ___
  2      2      I*2   *\/ 3    2      I*2   *\/ 3 
- ---- + ---- - ------------ + ---- + ------------
   2      4          4          4          4      
$$\left(- \frac{2^{\frac{2}{3}}}{2} + \left(\frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}\right)\right) + \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}\right)$$
=
0
$$0$$
product
  2/3  / 2/3      2/3   ___\ / 2/3      2/3   ___\
-2     |2      I*2   *\/ 3 | |2      I*2   *\/ 3 |
------*|---- - ------------|*|---- + ------------|
  2    \ 4          4      / \ 4          4      /
$$- \frac{2^{\frac{2}{3}}}{2} \left(\frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}\right) \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}\right)$$
=
-1/2
$$- \frac{1}{2}$$
-1/2
Rapid solution [src]
       2/3 
     -2    
x1 = ------
       2   
$$x_{1} = - \frac{2^{\frac{2}{3}}}{2}$$
      2/3      2/3   ___
     2      I*2   *\/ 3 
x2 = ---- - ------------
      4          4      
$$x_{2} = \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
      2/3      2/3   ___
     2      I*2   *\/ 3 
x3 = ---- + ------------
      4          4      
$$x_{3} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
x3 = 2^(2/3)/4 + 2^(2/3)*sqrt(3)*i/4
Numerical answer [src]
x1 = 0.39685026299205 - 0.687364818499301*i
x2 = 0.39685026299205 + 0.687364818499301*i
x3 = -0.7937005259841
x3 = -0.7937005259841