2x+2y+3=9 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
2*x+2*y+3 = 9
Looking for similar summands in the left part:
3 + 2*x + 2*y = 9
Move free summands (without x)
from left part to right part, we given:
$$2 x + 2 y = 6$$
Move the summands with the other variables
from left part to right part, we given:
$$2 x = \left(-2\right) y + 6$$
Divide both parts of the equation by 2
x = 6 - 2*y / (2)
We get the answer: x = 3 - y
$$x_{1} = - \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 3$$
x1 = -re(y) - i*im(y) + 3
Sum and product of roots
[src]
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 3$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 3$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 3$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 3$$