Mister Exam

Other calculators

2x+2y+3=9 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
2*x + 2*y + 3 = 9
$$\left(2 x + 2 y\right) + 3 = 9$$
Detail solution
Given the linear equation:
2*x+2*y+3 = 9

Looking for similar summands in the left part:
3 + 2*x + 2*y = 9

Move free summands (without x)
from left part to right part, we given:
$$2 x + 2 y = 6$$
Move the summands with the other variables
from left part to right part, we given:
$$2 x = \left(-2\right) y + 6$$
Divide both parts of the equation by 2
x = 6 - 2*y / (2)

We get the answer: x = 3 - y
The graph
Rapid solution [src]
x1 = 3 - re(y) - I*im(y)
$$x_{1} = - \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 3$$
x1 = -re(y) - i*im(y) + 3
Sum and product of roots [src]
sum
3 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 3$$
=
3 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 3$$
product
3 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 3$$
=
3 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 3$$
3 - re(y) - i*im(y)