Mister Exam

Other calculators

(2x-3)(4-3x)=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
(2*x - 3)*(4 - 3*x) = 0
$$\left(4 - 3 x\right) \left(2 x - 3\right) = 0$$
Detail solution
Expand the expression in the equation
$$\left(4 - 3 x\right) \left(2 x - 3\right) = 0$$
We get the quadratic equation
$$- 6 x^{2} + 17 x - 12 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -6$$
$$b = 17$$
$$c = -12$$
, then
D = b^2 - 4 * a * c = 

(17)^2 - 4 * (-6) * (-12) = 1

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{4}{3}$$
$$x_{2} = \frac{3}{2}$$
The graph
Rapid solution [src]
x1 = 4/3
$$x_{1} = \frac{4}{3}$$
x2 = 3/2
$$x_{2} = \frac{3}{2}$$
x2 = 3/2
Sum and product of roots [src]
sum
4/3 + 3/2
$$\frac{4}{3} + \frac{3}{2}$$
=
17/6
$$\frac{17}{6}$$
product
4*3
---
3*2
$$\frac{3 \cdot 4}{2 \cdot 3}$$
=
2
$$2$$
2
Numerical answer [src]
x1 = 1.33333333333333
x2 = 1.5
x2 = 1.5