10x-8x^2*3=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -24$$
$$b = 10$$
$$c = 0$$
, then
D = b^2 - 4 * a * c =
(10)^2 - 4 * (-24) * (0) = 100
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or
$$x_{1} = 0$$
$$x_{2} = \frac{5}{12}$$
Vieta's Theorem
rewrite the equation
$$10 x - 3 \cdot 8 x^{2} = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{5 x}{12} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{5}{12}$$
$$q = \frac{c}{a}$$
$$q = 0$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{5}{12}$$
$$x_{1} x_{2} = 0$$
$$x_{1} = 0$$
$$x_{2} = \frac{5}{12}$$
Sum and product of roots
[src]
$$\frac{5}{12}$$
$$\frac{5}{12}$$
$$\frac{0 \cdot 5}{12}$$
$$0$$