Mister Exam

Other calculators

16x+5x2+12=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
16*x + 5*x2 + 12 = 0
$$\left(16 x + 5 x_{2}\right) + 12 = 0$$
The graph
Sum and product of roots [src]
sum
  3   5*re(x2)   5*I*im(x2)
- - - -------- - ----------
  4      16          16    
$$- \frac{5 \operatorname{re}{\left(x_{2}\right)}}{16} - \frac{5 i \operatorname{im}{\left(x_{2}\right)}}{16} - \frac{3}{4}$$
=
  3   5*re(x2)   5*I*im(x2)
- - - -------- - ----------
  4      16          16    
$$- \frac{5 \operatorname{re}{\left(x_{2}\right)}}{16} - \frac{5 i \operatorname{im}{\left(x_{2}\right)}}{16} - \frac{3}{4}$$
product
  3   5*re(x2)   5*I*im(x2)
- - - -------- - ----------
  4      16          16    
$$- \frac{5 \operatorname{re}{\left(x_{2}\right)}}{16} - \frac{5 i \operatorname{im}{\left(x_{2}\right)}}{16} - \frac{3}{4}$$
=
  3   5*re(x2)   5*I*im(x2)
- - - -------- - ----------
  4      16          16    
$$- \frac{5 \operatorname{re}{\left(x_{2}\right)}}{16} - \frac{5 i \operatorname{im}{\left(x_{2}\right)}}{16} - \frac{3}{4}$$
-3/4 - 5*re(x2)/16 - 5*i*im(x2)/16
Rapid solution [src]
       3   5*re(x2)   5*I*im(x2)
x1 = - - - -------- - ----------
       4      16          16    
$$x_{1} = - \frac{5 \operatorname{re}{\left(x_{2}\right)}}{16} - \frac{5 i \operatorname{im}{\left(x_{2}\right)}}{16} - \frac{3}{4}$$
x1 = -5*re(x2)/16 - 5*i*im(x2)/16 - 3/4