Mister Exam

16x+5k=15x+10k equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
16*x + 5*k = 15*x + 10*k
$$5 k + 16 x = 10 k + 15 x$$
Detail solution
Given the linear equation:
16*x+5*k = 15*x+10*k

Looking for similar summands in the left part:
5*k + 16*x = 15*x+10*k

Looking for similar summands in the right part:
5*k + 16*x = 10*k + 15*x

Move the summands with the other variables
from left part to right part, we given:
$$16 x = 5 k + 15 x$$
Move the summands with the unknown x
from the right part to the left part:
$$x = 5 k$$
We get the answer: x = 5*k
The graph
Rapid solution [src]
x1 = 5*re(k) + 5*I*im(k)
$$x_{1} = 5 \operatorname{re}{\left(k\right)} + 5 i \operatorname{im}{\left(k\right)}$$
x1 = 5*re(k) + 5*i*im(k)
Sum and product of roots [src]
sum
5*re(k) + 5*I*im(k)
$$5 \operatorname{re}{\left(k\right)} + 5 i \operatorname{im}{\left(k\right)}$$
=
5*re(k) + 5*I*im(k)
$$5 \operatorname{re}{\left(k\right)} + 5 i \operatorname{im}{\left(k\right)}$$
product
5*re(k) + 5*I*im(k)
$$5 \operatorname{re}{\left(k\right)} + 5 i \operatorname{im}{\left(k\right)}$$
=
5*re(k) + 5*I*im(k)
$$5 \operatorname{re}{\left(k\right)} + 5 i \operatorname{im}{\left(k\right)}$$
5*re(k) + 5*i*im(k)