15x-3y=39 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
15*x-3*y = 39
Looking for similar summands in the left part:
-3*y + 15*x = 39
Move the summands with the other variables
from left part to right part, we given:
$$15 x = 3 y + 39$$
Divide both parts of the equation by 15
x = 39 + 3*y / (15)
We get the answer: x = 13/5 + y/5
13 re(y) I*im(y)
x1 = -- + ----- + -------
5 5 5
$$x_{1} = \frac{\operatorname{re}{\left(y\right)}}{5} + \frac{i \operatorname{im}{\left(y\right)}}{5} + \frac{13}{5}$$
x1 = re(y)/5 + i*im(y)/5 + 13/5
Sum and product of roots
[src]
13 re(y) I*im(y)
-- + ----- + -------
5 5 5
$$\frac{\operatorname{re}{\left(y\right)}}{5} + \frac{i \operatorname{im}{\left(y\right)}}{5} + \frac{13}{5}$$
13 re(y) I*im(y)
-- + ----- + -------
5 5 5
$$\frac{\operatorname{re}{\left(y\right)}}{5} + \frac{i \operatorname{im}{\left(y\right)}}{5} + \frac{13}{5}$$
13 re(y) I*im(y)
-- + ----- + -------
5 5 5
$$\frac{\operatorname{re}{\left(y\right)}}{5} + \frac{i \operatorname{im}{\left(y\right)}}{5} + \frac{13}{5}$$
13 re(y) I*im(y)
-- + ----- + -------
5 5 5
$$\frac{\operatorname{re}{\left(y\right)}}{5} + \frac{i \operatorname{im}{\left(y\right)}}{5} + \frac{13}{5}$$
13/5 + re(y)/5 + i*im(y)/5