10X+Y=12 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
10*x+y = 12
Looking for similar summands in the left part:
y + 10*x = 12
Move the summands with the other variables
from left part to right part, we given:
$$10 x = 12 - y$$
Divide both parts of the equation by 10
x = 12 - y / (10)
We get the answer: x = 6/5 - y/10
6 re(y) I*im(y)
x1 = - - ----- - -------
5 10 10
$$x_{1} = - \frac{\operatorname{re}{\left(y\right)}}{10} - \frac{i \operatorname{im}{\left(y\right)}}{10} + \frac{6}{5}$$
x1 = -re(y)/10 - i*im(y)/10 + 6/5
Sum and product of roots
[src]
6 re(y) I*im(y)
- - ----- - -------
5 10 10
$$- \frac{\operatorname{re}{\left(y\right)}}{10} - \frac{i \operatorname{im}{\left(y\right)}}{10} + \frac{6}{5}$$
6 re(y) I*im(y)
- - ----- - -------
5 10 10
$$- \frac{\operatorname{re}{\left(y\right)}}{10} - \frac{i \operatorname{im}{\left(y\right)}}{10} + \frac{6}{5}$$
6 re(y) I*im(y)
- - ----- - -------
5 10 10
$$- \frac{\operatorname{re}{\left(y\right)}}{10} - \frac{i \operatorname{im}{\left(y\right)}}{10} + \frac{6}{5}$$
6 re(y) I*im(y)
- - ----- - -------
5 10 10
$$- \frac{\operatorname{re}{\left(y\right)}}{10} - \frac{i \operatorname{im}{\left(y\right)}}{10} + \frac{6}{5}$$
6/5 - re(y)/10 - i*im(y)/10