Mister Exam

Differential equation sec2xtgydx+sec2ytgxdy=0

For Cauchy problem:

y() =
y'() =
y''() =
y'''() =
y''''() =

The graph:

from to

The solution

You have entered [src]
                     d                              
sec(2*x)*tan(y(x)) + --(y(x))*sec(2*y(x))*tan(x) = 0
                     dx                             
$$\tan{\left(x \right)} \sec{\left(2 y{\left(x \right)} \right)} \frac{d}{d x} y{\left(x \right)} + \tan{\left(y{\left(x \right)} \right)} \sec{\left(2 x \right)} = 0$$
tan(x)*sec(2*y)*y' + tan(y)*sec(2*x) = 0
Graph of the Cauchy problem
The classification
factorable
separable
lie group
separable Integral
Numerical answer [src]
(x, y):
(-10.0, 0.75)
(-7.777777777777778, 0.076529853586812)
(-5.555555555555555, 2.17e-322)
(-3.333333333333333, nan)
(-1.1111111111111107, 2.78363573e-315)
(1.1111111111111107, 8.427456047434801e+197)
(3.333333333333334, 3.1933833808213433e-248)
(5.555555555555557, 1.5636038433718505e+185)
(7.777777777777779, 8.388243566958553e+296)
(10.0, 3.861029683e-315)
(10.0, 3.861029683e-315)
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: