Mister Exam

Differential equation sec^2xsecy=y'(ctgx)(siny)

For Cauchy problem:

y() =
y'() =
y''() =
y'''() =
y''''() =

The graph:

from to

The solution

You have entered [src]
   2                d                        
sec (x)*sec(y(x)) = --(y(x))*cot(x)*sin(y(x))
$$\sec^{2}{\left(x \right)} \sec{\left(y{\left(x \right)} \right)} = \sin{\left(y{\left(x \right)} \right)} \cot{\left(x \right)} \frac{d}{d x} y{\left(x \right)}$$
sec(x)^2*sec(y) = sin(y)*cot(x)*y'
Graph of the Cauchy problem
The classification
1st power series
lie group
separable Integral
Numerical answer [src]
(x, y):
(-10.0, 0.75)
(-7.777777777777778, 1.5707963455562954)
(-5.555555555555555, 2.17e-322)
(-3.333333333333333, nan)
(-1.1111111111111107, 2.78363573e-315)
(1.1111111111111107, 8.427456047434801e+197)
(3.333333333333334, 3.1933833808213433e-248)
(5.555555555555557, 7.793670397367311e-43)
(7.777777777777779, 8.388243567339678e+296)
(10.0, 3.861029683e-315)
(10.0, 3.861029683e-315)
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: