Mister Exam

Other calculators

Differential equation sec^2*tgydx+sec^2ytgxdy=0

For Cauchy problem:

y() =
y'() =
y''() =
y'''() =
y''''() =

The graph:

from to

The solution

You have entered [src]
   2                 2       d                  
sec (tan(y(x))) + sec (y(x))*--(y(x))*tan(x) = 0
                             dx                 
$$\tan{\left(x \right)} \sec^{2}{\left(y{\left(x \right)} \right)} \frac{d}{d x} y{\left(x \right)} + \sec^{2}{\left(\tan{\left(y{\left(x \right)} \right)} \right)} = 0$$
tan(x)*sec(y)^2*y' + sec(tan(y))^2 = 0
Graph of the Cauchy problem
The classification
factorable
separable
lie group
separable Integral
Numerical answer [src]
(x, y):
(-10.0, 0.75)
(-7.777777777777778, 1.0488484866518955)
(-5.555555555555555, 2.17e-322)
(-3.333333333333333, nan)
(-1.1111111111111107, 2.78363573e-315)
(1.1111111111111107, 6.971028255580836e+173)
(3.333333333333334, 3.1933833808213398e-248)
(5.555555555555557, 4.3149409499051355e-61)
(7.777777777777779, 8.388243567354541e+296)
(10.0, 3.861029683e-315)
(10.0, 3.861029683e-315)
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: