Mister Exam

Other calculators

Differential equation sec^2*tgy*dx+sec^2*tgx*dy=0

For Cauchy problem:

y() =
y'() =
y''() =
y'''() =
y''''() =

The graph:

from to

The solution

You have entered [src]
   2                 2    d                  
sec (tan(y(x))) + sec (x)*--(y(x))*tan(x) = 0
                          dx                 
$$\tan{\left(x \right)} \sec^{2}{\left(x \right)} \frac{d}{d x} y{\left(x \right)} + \sec^{2}{\left(\tan{\left(y{\left(x \right)} \right)} \right)} = 0$$
tan(x)*sec(x)^2*y' + sec(tan(y))^2 = 0
Graph of the Cauchy problem
The classification
factorable
separable
lie group
separable Integral
Numerical answer [src]
(x, y):
(-10.0, 0.75)
(-7.777777777777778, 1.0407980746526786)
(-5.555555555555555, 2.17e-322)
(-3.333333333333333, nan)
(-1.1111111111111107, 2.78363573e-315)
(1.1111111111111107, 8.427456047434801e+197)
(3.333333333333334, 3.1933833808213433e-248)
(5.555555555555557, 2.5910489201161894e+184)
(7.777777777777779, 8.388243567338121e+296)
(10.0, 3.861029683e-315)
(10.0, 3.861029683e-315)
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: