Mister Exam

Other calculators

Differential equation sec^2(x)tanydx+sec^2(y)tanxdy=0

For Cauchy problem:

y() =
y'() =
y''() =
y'''() =
y''''() =

The graph:

from to

The solution

You have entered [src]
   2                   2       d                  
sec (x)*tan(y(x)) + sec (y(x))*--(y(x))*tan(x) = 0
                               dx                 
$$\tan{\left(x \right)} \sec^{2}{\left(y{\left(x \right)} \right)} \frac{d}{d x} y{\left(x \right)} + \tan{\left(y{\left(x \right)} \right)} \sec^{2}{\left(x \right)} = 0$$
tan(x)*sec(y)^2*y' + tan(y)*sec(x)^2 = 0
Graph of the Cauchy problem
The classification
factorable
separable
1st exact
almost linear
lie group
separable Integral
1st exact Integral
almost linear Integral
Numerical answer [src]
(x, y):
(-10.0, 0.75)
(-7.777777777777778, 2.7282267710197226)
(-5.555555555555555, 3.1415893903810566)
(-3.333333333333333, 3.1416092228172787)
(-1.1111111111111107, 6.283186830127612)
(1.1111111111111107, 9.424776207707366)
(3.333333333333334, 12.566344135993731)
(5.555555555555557, 12.566376318724451)
(7.777777777777779, 15.707962829192384)
(10.0, 18.849546154809968)
(10.0, 18.849546154809968)
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: