Mister Exam

Other calculators

You entered:

x^2*y''+2*x*y'-2*y=0

What you mean?

Differential equation x^2*y''+2*x*y'-2*y=0

For Cauchy problem:

y() =
y'() =
y''() =
y'''() =
y''''() =

The graph:

from to

The solution

You have entered [src]
               2                         
           2  d              d           
-2*y(x) + x *---(y(x)) + 2*x*--(y(x)) = 0
               2             dx          
             dx                          
$$x^{2} \frac{d^{2}}{d x^{2}} y{\left(x \right)} + 2 x \frac{d}{d x} y{\left(x \right)} - 2 y{\left(x \right)} = 0$$
x^2*y'' + 2*x*y' - 2*y = 0
The answer [src]
       C1       
y(x) = -- + C2*x
        2       
       x        
$$y{\left(x \right)} = C_{2} x + \frac{C_{1}}{x^{2}}$$
The answer (#2) [src]
$$y\left(x\right)={\it ilt}\left({{g_{19164}^2\,\left({{d^2}\over{d\, g_{19164}^2}}\,\mathcal{L}\left(y\left(x\right) , x , g_{19164} \right)\right)+2\,g_{19164}\,\left({{d}\over{d\,g_{19164}}}\, \mathcal{L}\left(y\left(x\right) , x , g_{19164}\right)\right) }\over{2}} , g_{19164} , x\right)$$
y = 'ilt((g19164^2*'diff('laplace(y,x,g19164),g19164,2)+2*g19164*'diff('laplace(y,x,g19164),g19164,1))/2,g19164,x)
The classification
2nd linear bessel
2nd power series regular
factorable
nth linear euler eq homogeneous
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: