2/x\ sin |-|*sin(x) \2/
sin(x/2)^2*sin(x)
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
; to find :
The derivative of sine is cosine:
The result is:
Now simplify:
The answer is:
2/x\ /x\ /x\ sin |-|*cos(x) + cos|-|*sin(x)*sin|-| \2/ \2/ \2/
/ 2/x\ 2/x\\ |sin |-| - cos |-||*sin(x) 2/x\ \ \2/ \2// /x\ /x\ - sin |-|*sin(x) - -------------------------- + 2*cos(x)*cos|-|*sin|-| \2/ 2 \2/ \2/
/ / 2/x\ 2/x\\ \ | 3*|sin |-| - cos |-||*cos(x) | | 2/x\ \ \2/ \2// /x\ /x\| -|sin |-|*cos(x) + ---------------------------- + 4*cos|-|*sin(x)*sin|-|| \ \2/ 2 \2/ \2//