Mister Exam

Other calculators


y=sin^2(x/2)*sinx
  • How to use it?

  • Derivative of:
  • Derivative of x^x^x
  • Derivative of x^-11 Derivative of x^-11
  • Derivative of -x/2
  • Derivative of y=3x²+5x+4 Derivative of y=3x²+5x+4
  • Identical expressions

  • y=sin^ two (x/ two)*sinx
  • y equally sinus of squared (x divide by 2) multiply by sinus of x
  • y equally sinus of to the power of two (x divide by two) multiply by sinus of x
  • y=sin2(x/2)*sinx
  • y=sin2x/2*sinx
  • y=sin²(x/2)*sinx
  • y=sin to the power of 2(x/2)*sinx
  • y=sin^2(x/2)sinx
  • y=sin2(x/2)sinx
  • y=sin2x/2sinx
  • y=sin^2x/2sinx
  • y=sin^2(x divide by 2)*sinx

Derivative of y=sin^2(x/2)*sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/x\       
sin |-|*sin(x)
    \2/       
$$\sin{\left(x \right)} \sin^{2}{\left(\frac{x}{2} \right)}$$
sin(x/2)^2*sin(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2/x\             /x\           /x\
sin |-|*cos(x) + cos|-|*sin(x)*sin|-|
    \2/             \2/           \2/
$$\sin{\left(x \right)} \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} + \sin^{2}{\left(\frac{x}{2} \right)} \cos{\left(x \right)}$$
The second derivative [src]
                   /   2/x\      2/x\\                                
                   |sin |-| - cos |-||*sin(x)                         
     2/x\          \    \2/       \2//                      /x\    /x\
- sin |-|*sin(x) - -------------------------- + 2*cos(x)*cos|-|*sin|-|
      \2/                      2                            \2/    \2/
$$- \frac{\left(\sin^{2}{\left(\frac{x}{2} \right)} - \cos^{2}{\left(\frac{x}{2} \right)}\right) \sin{\left(x \right)}}{2} - \sin^{2}{\left(\frac{x}{2} \right)} \sin{\left(x \right)} + 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(x \right)}$$
The third derivative [src]
 /                   /   2/x\      2/x\\                                \
 |                 3*|sin |-| - cos |-||*cos(x)                         |
 |   2/x\            \    \2/       \2//               /x\           /x\|
-|sin |-|*cos(x) + ---------------------------- + 4*cos|-|*sin(x)*sin|-||
 \    \2/                       2                      \2/           \2//
$$- (\frac{3 \left(\sin^{2}{\left(\frac{x}{2} \right)} - \cos^{2}{\left(\frac{x}{2} \right)}\right) \cos{\left(x \right)}}{2} + \sin^{2}{\left(\frac{x}{2} \right)} \cos{\left(x \right)} + 4 \sin{\left(\frac{x}{2} \right)} \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)})$$
The graph
Derivative of y=sin^2(x/2)*sinx