Mister Exam

Other calculators


(x^2-3x+1)^7

Derivative of (x^2-3x+1)^7

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
              7
/ 2          \ 
\x  - 3*x + 1/ 
$$\left(x^{2} - 3 x + 1\right)^{7}$$
  /              7\
d |/ 2          \ |
--\\x  - 3*x + 1/ /
dx                 
$$\frac{d}{d x} \left(x^{2} - 3 x + 1\right)^{7}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      3. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
              6             
/ 2          \              
\x  - 3*x + 1/ *(-21 + 14*x)
$$\left(14 x - 21\right) \left(x^{2} - 3 x + 1\right)^{6}$$
The second derivative [src]
                 5                               
   /     2      \  /     2                     2\
14*\1 + x  - 3*x/ *\1 + x  - 3*x + 3*(-3 + 2*x) /
$$14 \left(x^{2} - 3 x + 1\right)^{5} \left(x^{2} + 3 \left(2 x - 3\right)^{2} - 3 x + 1\right)$$
The third derivative [src]
                 4                                             
   /     2      \             /                       2      2\
42*\1 + x  - 3*x/ *(-3 + 2*x)*\6 - 18*x + 5*(-3 + 2*x)  + 6*x /
$$42 \cdot \left(2 x - 3\right) \left(x^{2} - 3 x + 1\right)^{4} \cdot \left(6 x^{2} + 5 \left(2 x - 3\right)^{2} - 18 x + 6\right)$$
The graph
Derivative of (x^2-3x+1)^7