3*x - sin(3*x) -------------- 3 tan (2*x)
(3*x - sin(3*x))/tan(2*x)^3
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2 \ 3 - 3*cos(3*x) \6 + 6*tan (2*x)/*(3*x - sin(3*x)) -------------- - ---------------------------------- 3 4 tan (2*x) tan (2*x)
/ / / 2 \\ / 2 \ \ | / 2 \ | 2*\1 + tan (2*x)/| 12*\1 + tan (2*x)/*(-1 + cos(3*x))| 3*|3*sin(3*x) + 8*\1 + tan (2*x)/*|-1 + -----------------|*(-sin(3*x) + 3*x) + ----------------------------------| | | 2 | tan(2*x) | \ \ tan (2*x) / / ------------------------------------------------------------------------------------------------------------------ 3 tan (2*x)
/ / / 2 \\ \ | / 2 \ | 2*\1 + tan (2*x)/| | | / 2\ 72*\1 + tan (2*x)/*|-1 + -----------------|*(-1 + cos(3*x))| | / 2 \ | / 2 \ / 2 \ | | 2 | | |9*cos(3*x) 54*\1 + tan (2*x)/*sin(3*x) / 2 \ | 11*\1 + tan (2*x)/ 10*\1 + tan (2*x)/ | \ tan (2*x) / | 3*|---------- - --------------------------- - 16*\1 + tan (2*x)/*(-sin(3*x) + 3*x)*|2 - ------------------ + -------------------| - -----------------------------------------------------------| | tan(2*x) 2 | 2 4 | tan(2*x) | \ tan (2*x) \ tan (2*x) tan (2*x) / / ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 2 tan (2*x)