Mister Exam

Other calculators

Derivative of (3x-sin(3x))/(tan(2x))^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*x - sin(3*x)
--------------
     3        
  tan (2*x)   
$$\frac{3 x - \sin{\left(3 x \right)}}{\tan^{3}{\left(2 x \right)}}$$
(3*x - sin(3*x))/tan(2*x)^3
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                 /         2     \                 
3 - 3*cos(3*x)   \6 + 6*tan (2*x)/*(3*x - sin(3*x))
-------------- - ----------------------------------
     3                          4                  
  tan (2*x)                  tan (2*x)             
$$\frac{3 - 3 \cos{\left(3 x \right)}}{\tan^{3}{\left(2 x \right)}} - \frac{\left(3 x - \sin{\left(3 x \right)}\right) \left(6 \tan^{2}{\left(2 x \right)} + 6\right)}{\tan^{4}{\left(2 x \right)}}$$
The second derivative [src]
  /                               /       /       2     \\                        /       2     \                \
  |               /       2     \ |     2*\1 + tan (2*x)/|                     12*\1 + tan (2*x)/*(-1 + cos(3*x))|
3*|3*sin(3*x) + 8*\1 + tan (2*x)/*|-1 + -----------------|*(-sin(3*x) + 3*x) + ----------------------------------|
  |                               |            2         |                                  tan(2*x)             |
  \                               \         tan (2*x)    /                                                       /
------------------------------------------------------------------------------------------------------------------
                                                       3                                                          
                                                    tan (2*x)                                                     
$$\frac{3 \left(8 \left(3 x - \sin{\left(3 x \right)}\right) \left(\frac{2 \left(\tan^{2}{\left(2 x \right)} + 1\right)}{\tan^{2}{\left(2 x \right)}} - 1\right) \left(\tan^{2}{\left(2 x \right)} + 1\right) + \frac{12 \left(\cos{\left(3 x \right)} - 1\right) \left(\tan^{2}{\left(2 x \right)} + 1\right)}{\tan{\left(2 x \right)}} + 3 \sin{\left(3 x \right)}\right)}{\tan^{3}{\left(2 x \right)}}$$
The third derivative [src]
  /                                                                                                                                                    /       /       2     \\                \
  |                                                                                                                                    /       2     \ |     2*\1 + tan (2*x)/|                |
  |                                                                                /                                           2\   72*\1 + tan (2*x)/*|-1 + -----------------|*(-1 + cos(3*x))|
  |                /       2     \                                                 |       /       2     \      /       2     \ |                      |            2         |                |
  |9*cos(3*x)   54*\1 + tan (2*x)/*sin(3*x)      /       2     \                   |    11*\1 + tan (2*x)/   10*\1 + tan (2*x)/ |                      \         tan (2*x)    /                |
3*|---------- - --------------------------- - 16*\1 + tan (2*x)/*(-sin(3*x) + 3*x)*|2 - ------------------ + -------------------| - -----------------------------------------------------------|
  | tan(2*x)                2                                                      |           2                     4          |                             tan(2*x)                         |
  \                      tan (2*x)                                                 \        tan (2*x)             tan (2*x)     /                                                              /
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                              2                                                                                                 
                                                                                           tan (2*x)                                                                                            
$$\frac{3 \left(- 16 \left(3 x - \sin{\left(3 x \right)}\right) \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(\frac{10 \left(\tan^{2}{\left(2 x \right)} + 1\right)^{2}}{\tan^{4}{\left(2 x \right)}} - \frac{11 \left(\tan^{2}{\left(2 x \right)} + 1\right)}{\tan^{2}{\left(2 x \right)}} + 2\right) - \frac{72 \left(\frac{2 \left(\tan^{2}{\left(2 x \right)} + 1\right)}{\tan^{2}{\left(2 x \right)}} - 1\right) \left(\cos{\left(3 x \right)} - 1\right) \left(\tan^{2}{\left(2 x \right)} + 1\right)}{\tan{\left(2 x \right)}} - \frac{54 \left(\tan^{2}{\left(2 x \right)} + 1\right) \sin{\left(3 x \right)}}{\tan^{2}{\left(2 x \right)}} + \frac{9 \cos{\left(3 x \right)}}{\tan{\left(2 x \right)}}\right)}{\tan^{2}{\left(2 x \right)}}$$