Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$\frac{4 \log{\left(x \right)}^{3}}{x}$$
The second derivative
[src]
2
4*log (x)*(3 - log(x))
----------------------
2
x
$$\frac{4 \left(3 - \log{\left(x \right)}\right) \log{\left(x \right)}^{2}}{x^{2}}$$
The third derivative
[src]
/ 2 \
4*\6 - 9*log(x) + 2*log (x)/*log(x)
-----------------------------------
3
x
$$\frac{4 \left(2 \log{\left(x \right)}^{2} - 9 \log{\left(x \right)} + 6\right) \log{\left(x \right)}}{x^{3}}$$