For example, you have entered: x2−2xy−10x+y2−6y+25=0
Detail solution
Given line equation of 2-order: x2−2xy−10x+y2−6y+25=0 This equation looks like: a11x2+2a12xy+2a13x+a22y2+2a23y+a33=0 where a11=1 a12=−1 a13=−5 a22=1 a23=−3 a33=25 To calculate the determinant Δ=a11a12a12a22 or, substitute Δ=1−1−11 Δ=0 Because Δ is equal to 0, then Rotate the resulting coordinate system by an angle φ x′=x~cos(ϕ)−y~sin(ϕ) y′=x~sin(ϕ)+y~cos(ϕ) φ - determined from the formula cot(2ϕ)=2a12a11−a22 substitute coefficients cot(2ϕ)=0 then ϕ=4π sin(2ϕ)=1 cos(2ϕ)=0 cos(ϕ)=2cos(2ϕ)+21 sin(ϕ)=1−cos2(ϕ) cos(ϕ)=22 sin(ϕ)=22 substitute coefficients x′=22x~−22y~ y′=22x~+22y~ then the equation turns from x′2−2x′y′−10x′+y′2−6y′+25=0 to (22x~−22y~)2−2(22x~−22y~)(22x~+22y~)−10(22x~−22y~)+(22x~+22y~)2−6(22x~+22y~)+25=0 simplify −82x~+2y~2+22y~+25=0 (2y~+1)2=82x~−24 (y~+22)2=42(x~−232) y~′2=42x~′ Given equation is by parabola - reduced to canonical form The center of the canonical coordinate system in OXY x0=x~cos(ϕ)−y~sin(ϕ) y0=x~sin(ϕ)+y~cos(ϕ) x0=022+022 y0=022+022 x0=0 y0=0 The center of canonical coordinate system at point O
(0, 0)
Basis of the canonical coordinate system e1=(22,22) e2=(−22,22)
Invariants method
Given line equation of 2-order: x2−2xy−10x+y2−6y+25=0 This equation looks like: a11x2+2a12xy+2a13x+a22y2+2a23y+a33=0 where a11=1 a12=−1 a13=−5 a22=1 a23=−3 a33=25 The invariants of the equation when converting coordinates are determinants: I1=a11+a22
I1=2 I2=0 I3=−64 I(λ)=λ2−2λ K2=16 Because I2=0∧I3=0 then by line type: this equation is of type : parabola I1y~2+2x~−I1I3=0 or 82x~+2y~2=0 y~2=42x~ - reduced to canonical form